Preparation of Functionalized Alkylmagnesium Derivatives Using an I/Mg-Exchange

LETTERS 2008 Vol. 10, No. 6 ¹¹⁸⁷-**¹¹⁸⁹**

ORGANIC

Christian B. Rauhut,† Viet Anh Vu,‡ Fraser F. Fleming,‡ and Paul Knochel*,†

*Department Chemie und Biochemie, Ludwig-Maximilians-Uni*V*ersita¨t, Butenandtstrasse 5-13, 81377, Mu¨nchen (Germany), and Department of Chemistry and Biochemistry, Duquesne Uni*V*ersity, Pittsburgh Pennsyl*V*ania 15282-1530*

MaCI-LICI

MgCl-LiCl

equiv) $-15 °C.3 h$

- cyclopentane

Paul.Knochel@cup.uni-muenchen.de

Received January 15, 2008

-MgCl-LiCl

ABSTRACT

Br

Me

CuCN-2LiCL

 $(5 \text{ mol})\%$

Organomagnesium reagents are important intermediates for organic synthesis.¹ Recently, I/Mg and Br/Mg-exchange reactions² on Csp²-centers have allowed the synthesis of a range of polyfunctional aryl and hetereoaryl magnesium compounds.3 Nevertheless, the extension of this exchange reaction to the preparation of sp³-hybridized alkylmagnesium reagents failed due to the slow I/Mg-exchange rate of alkyl iodides. The treatment of *ⁿ*OctI with *ⁱ*PrMgCl'LiCl leads to the magnesiated species only in traces and 1-octene is the main product. An alkoxide-directed I/Mg-exchange was also reported, but the use of two equivalents of *n*-BuLi excludes most functional groups.4 Herein, we report that the presence of an oxygen or nitrogen atom in *γ*-position to the carbon-

iodine bond⁵ considerably enhances the I/Mg-exchange rate. This sp³-exchange reaction provides the first preparation of various functionalized alkylmagnesium reagents such as **1a**-**^f** starting from the corresponding iodides **2a**-**^f** (Scheme 1).6 Performing the I/Mg-exchange reaction with *ⁱ*PrMgCl' LiCl leads to a slow and incomplete reaction, but using $iPr_2Mg \cdot LiCl$ (3)⁷ (0.75 equiv) for the I/Mg-exchange allows the formation of the magnesium reagent **1a** within 5 h at 25 °C. Quenching with $CO₂$ affords the carboxylic acid **4a** with 63% yield (entry 1, Table 1). Although the exchange reagent **3** can also be used to prepare other alkylmagnesium species such as **1b**, **1c**, **1e**, and **1f** (entries 1, 2, 9-14), often an excess of $iPr_2Mg \cdot LiCl$ (3) (up to 1.1 equiv, corresponding to 2.2 isopropyl units) is required to achieve

[†] Ludwig-Maximilians-Universität. **full conversion. full conversion**

[‡] Duquesne University.

^{(1) (}a) Knochel, P. In *Handbook of Functionalized Organometallics*; Wiley-VCH, 2005. (b) Boudier, A.; Bromm L. O.; Lotz, M.; Knochel P. *Angew. Chem., Int. Ed.* **2000**, *39*, 4415.

^{(2) (}a) Krasovskiy, A.; Knochel, P. *Angew. Chem., Int. Ed.* **2004**, *43*, 3333. (b) Liu, C.; Ren, H.; Knochel, P. *Org. Lett.* **2006**, *8*, 614. (c) Inoue,

A.; Kitagawa, K.; Shinokubo, H.; Oshima, K. *J. Org. Chem.* **2001**, *66*, 4333. (3) Knochel, P.; Dohle, W.; Gommermann, N.; Kneisel, F. F.; Kopp, F.; Korn, T.; Sapountzis, I.; Vu, V. A. *Angew. Chem., Int. Ed.* **2003**, *115*, 4438.

⁽⁴⁾ Fleming, F. F.; Subrahmanyan, G.; Vu, V. A.; Mycka, R. J.; Knochel, P. *Org. Lett.* **2007**, *9*, 4507.

⁽⁵⁾ Hoffmann, R. W.; Kusche, A. *Chem. Ber.* **1994**, *127*, 1311.

⁽⁶⁾ For the preparation of the iodides in most cases the corresponding alcohols were used: (a) Nicolaou, K. C.; Dai, W. M. *J. Am. Chem. Soc.* **1992**, *114*, 3908. (b) Plieninger, H.; Zeltner, M. *Chem. Ber.* **1987**, *108*, 3286. (c) Riehs, G.; Urban, E. *Tetrahedron* **1996**, *52*, 1221; Rocca, P. *Tetrahedron* **1998**, *54*, 8771. (d) Brocard, J. *Annal. Chim.* **1972**, *7*, 387. (e) Eisch, J. J.; Csaba, A. K.; Chobe, P.; Boleslawski, M. P. *J. Org. Chem.* **1987**, *5*, 4427. For more details, see Supporting Information.

⁽⁷⁾ Krasovskiy, A.; Straub, B.; Knochel, P. *Angew. Chem., Int. Ed.* **2006**, *45*, 159.

This excess leads to side reactions with the added electrophiles. We have solved this problem by using a 1,5-dimagnesium species such as **5** (Scheme 2). After the exchange reaction with an alkyl iodide (RCH₂I), the resulting 5-iodopentylmagnesium chloride (**6**) undergoes immediately an intramolecular S_N2 -substitution leading to cyclopentane 7^8 and to the desired Grignard reagent RCH2MgCl.

Using the di-Grignard reagent **5** allows the preparation of the alkylmagnesium chlorides **1b**-**^d** in good yields. Thus, the reaction of the alkyl iodide $2b$ with ClMg(CH₂)₅MgCl⁺ 2LiCl (**5**, 1.1 equiv, 25 °C, 2 h) provides the Grignard reagent **1b**, which reacted smoothly with allyl bromide, leading to the MOM-derivative **4c** in 71% yield (entry 3). The treatment of the alkyl iodide 2c with the exchange reagent 5 at -15 °C led to the Grignard reagent **1c** after 3 h. Quenching with methallyl bromide, benzaldehyde, or propionyl chloride gave the desired products with $63-72\%$ yield (entries $4-6$). The reaction of the β -iodoacetal **2d** with the 1,5-dimagnesium species **5** gave within 3 h at -20 °C the corresponding magnesium reagent **1d**. Quenching with *t*BuCHO or *S*-allyl benzenesulfonothiate9 furnished the expected products **4g**-**^h** (entries $7-8$) with $58-72\%$ yield. Nitrogen-containing heterocycles such as pyridine are also compatible with our reaction conditions. Thus, the reaction of the pyridine derivative **2e** with *ⁱ*Pr2Mg'LiCl (**3**) led after 1.5 h at 25 °^C to the Grignard reagent **1e**, which was trapped with benzaldehyde, *t*BuCHO, allyl bromide, or CO₂ in 56-75% yield (entries $9-12$).¹⁰ For the pyridine derivative 2f, a similar exchange could be performed with *i*Pr₂Mg·LiCl (25 °C, 2.5)

Table 1. I/Mg-Exchange of sp³-Hybridized Alkyliodides Followed by Electrophilic Alkylation

entry	Mg- reagent	- 1 electrophile	product	yield $(\%)^a$
$\overline{1}$	1a	CO ₂	$\overline{CO_2H}$ MOMO-	63^b
$\overline{\mathbf{c}}$ 3	1 _b 1 _b	CO ₂ Br.	4a Pr MOMO. CO ₂ H 4 _b įPr MOMO	73^b 71°
$\overline{4}$	1c	Me ₿ŗ	4c Me	72°
5	1c	PhCHO	4d Ph ÒН	72°
6	1 _c	EtCOCI	4e C 0 Ö	$63^{\text{c,d}}$
7	1 _d	<i>t</i> BuCHO	4f iРr OH tBu	72°
8	1 _d	$PhSO_2S$ -allyi	4g iΡr ∩	58°
9	1e	PhCHO	4 _h QН Ph ۶N	56 ^b
10	1e	IBuCHO	4i QH tBu	61^b
11	1e	Br.	4j ۶N	64^b
12	1e	CO ₂	4k CO ₂ H ۶Ń	$75^{\rm b}$
13	1f	<i>t</i> BuCHO	$\overline{4}$ Ph OH Ph. tBu ۶Ń	59 ^b
14	1f	CO ₂ Et Br	4m Ph. Ph CO ₂ Et N 4n	59 ^b

a Isolated yields. *b* Using as exchange reagent: *i*Pr₂Mg·LiCl (0.65-1.1 equiv). *c* Using as exchange reagent: ClMg(CH₂)₅MgCl·2LiCl (1.1 equiv). ^{*d*} After transmetallation to copper using CuCN·2LiCl¹² (1.0 equiv).

⁽⁸⁾ The formation of cyclopentane was proven by preparing 3-phenylpentyl-1,5-dimagnesium chloride. Its reaction with the alkyl iodide **2b** provides the cyclisation product (cyclopentylbenzene), which was detected by GC-MS as the main product. See also: Yang, X.; Knochel, P. *Synlett* **2004**, 82.

⁽⁹⁾ Kozikowski, A. P.; Anes, A.; Wetter, H. *J. Organomet. Chem.* **1978**, *3*, 164.

⁽¹⁰⁾ Pasquinet, E.; Rocca, P.; Godard, A.; Marsais, F.; Quéguiner, G. *J. Chem. Soc*., *Perkin Trans. 1* **1998**, 3807.

h). Reacting **1f** with benzaldehyde or ethyl 2-(bromomethyl) acrylate¹¹ led to the expected products (entries $13-14$) in 59% yield.

Magnesium homo-enolates were also prepared by this approach. Thus, the reaction of the β -iodoester **8a** with *i*Pr₂-Mg \cdot LiCl (3) at -10 °C led to the corresponding magnesium homo-enolate, which reacted with benzaldehyde leading after lactonization to the spirolactone **10a** in 68% yield (entry 1, Table 2).¹³ Its reaction with allyl bromide provided the corresponding allylated product **10b** in 78% yield (entry 2).14 The same conditions gave, with carboxylic ester **8b**, the allylated product **10c** in 68% yield (entry 3).15 Cyclopropane derived products (**10d**-**e**) were obtained after transmetallation to copper¹² and trapping with PhCOCl in $71-75%$ yield (entries $4-5$).¹⁶

In summary, we have shown that primary alkyl iodides bearing a *γ*-oxygen or *γ*-nitrogen substituent readily undergo an I/Mg-exchange with iPr_2Mg ⁻LiCl (3) or ClMg(CH₂)₅-MgCl⁺2LiCl (**5**). Quenching the resulting sp^3 -hybridized Grignard reagent with a range of electrophiles allows the Grignard reagent with a range of electrophiles allows the preparation of various functionalized products (**4a**-**n**, **10a**-**e**). Extension of this method to other alkylmagnesium species is currently underway in our laboratories.

Table 2. I/Mg-Exchange on *â*-Iodalkyl Esters of Type **8** Followed by Quenching with Electrophiles

8a: R^1 , R^2 = -(CH ₂) ₅ - 8b : R^1 , R^2 = Me		9a : R^1 , R^2 = -(CH ₂) ₅ - 9b : R^1 , R^2 = Me	10а-е
$EtO_2C_2 \sim$ D ¹	Pr ₂ Mg LiCl $(0.65$ equiv)	$\overline{\mathrm{EtO_2C}}$ \leftarrow $\overline{\mathrm{R}^2}$ MgCl	$\frac{E1O_2C}{R^1}\times R^2E$

^a Isolated yields. *^b* After transmetallation to copper using CuCN'2LiCl (1.0 equiv).

Acknowledgment. We thank the Fonds der Chemischen Industrie for the financial support and Chemetall GmbH (Frankfurt) and BASF AG (Ludwigshafen) for the generous gift of chemicals.

Supporting Information Available: Experimental procedures and full characterization of all new compounds. This material is available free of charge via Internet at http:// pubs.acs.org.

OL8000987

^{(11) (}a) Villieras, J.; Rambaud, M. *Synthesis* **1982**, *11*, 924. (b) Villieras, J.; Rambaud, M. *Org. Synth.* **1988**, *66*, 220.

⁽¹²⁾ Knochel, P.; Yeh, M. C. P.; Berk, S. C.; Talbert, J. *J. Org. Chem.* **1988**, *53*, 2390.

⁽¹³⁾ Treves, G. R.; Stange, H.; Olofson, R. A. *J. Am. Chem. Soc.* **1967**, *89*, 6257.

^{(14) (}a) Nuhrich, A.; Moulines, J. *Tetrahedron* **1991**, *47*, 3075. (b) Clive, D. L. J.; Pham, M. P.; Subedi, R. *J. Am. Chem. Soc.* **2007**, *129*, 2713.

⁽¹⁵⁾ Ashby, E. C.; Park, B.; Patil, G. S.; Gadru, K.; Gurumurthy, R. *J. Org. Chem.* **1993**, *58*, 424; Juaristi, E.; Jimbnez-Vizquez, H. A. *J. Org. Chem.* **¹⁹⁹¹**, *⁵⁶*, 1623; Fehr, C.; Galindo, J. *Hel*V*. Chim. Acta* **¹⁹⁸⁶**, *⁶⁹*, 228.

⁽¹⁶⁾ These type of cyclopropane derivatives were obtained by reacting metallic sodium, the chloro derivatives of type **8** and TMSCl: Ruehlmann, K. *Synthesis* **1971**, 236. See also: (a) Nakamura, E.; Kuwajima, I. *J. Am. Chem. Soc.* **1983**, *105*, 651. (b) Nakamura E.; Shimada, J.-I.; Kuwajima, I. *Organometallics* **1985**, *4*, 641. (c) Reissig, H.-U.; Holzinger, H.; Glomsda, G. *Tetrahedron* **1989**, *45*, 3139.